Comprised of a natural protein fiber, silk mainly consists of fibroin, which is a protein that certain types of insect larvae secrete to make cocoons. While other insects also produce silk-like substances, most of the world’s silk is derived from Bombyx mori larvae, which are worms that only live on mulberry trees. XS-2XL Cooling Pet Dog Summer Clothes For Dogs Shirt Milk Silk Fabric Puppy Pet Clothing For Small Dogs Costume Chihuahua #3 Shop900245210 Store US $2.05 - 2.17 / piece. Mar 17, 2014 It feels like silk and if the mildly erotic promo video on their site is anything to go by, you can stick a naked model in a milk bath and have her come out of it dressed in a flowing Athenian.
BioSteel was a trademark name for a high-strength fiber-based material made of the recombinantspider silk-like protein extracted from the milk of transgenicgoats, made by Montreal-based company Nexia Biotechnologies, and later by the Randy Lewis lab of the University of Wyoming and Utah State University.[1] It is reportedly 7-10 times as strong as steel if compared for the same weight, and can stretch up to 20 times its unaltered size without losing its strength properties. It also has very high resistance to extreme temperatures, not losing any of its properties within −20 to 330 degrees Celsius (−4 to 626 degrees Fahrenheit).
The company had created lines of goats to produce recombinant versions of two spidroins from Nephila clavipes, the golden orb weaver, MaSp1 and MaSp2[2][3] When the female goats lactate, the milk, containing the recombinant DNA silk, was to be harvested and subjected to chromatographic techniques to purify the recombinant silk proteins.
The purified silk proteins could be dried, dissolved using solvents (DOPE formation) and transformed into microfibers using wet-spinning fiber production methods. The spun fibers were reported to have tenacities in the range of 2 - 3 grams/denier and elongation range of 25-45%. The 'Biosteel biopolymer' had been transformed into nanofibers and nanomeshes using the electrospinning technique.[4]
Milk Fiber
Nexia is the only company that has successfully produced fibers from spider silk expressed in goat's milk. The Lewis lab has produced fibers from recombinant spider silk protein and synthetic spider silk proteins and genetic chimeras produced in both recombinant E. coli and the milk of recombinant goats, however, no one has been able to produce the silk in commercial quantities thus far. The company was founded in 1993 by Dr. Jeffrey Turner and Paul Ballard and was sold in 2005 to Pharmathene.
- Mulberry silk is the most common and widely used silk around the world.
- Silk crepe is a lightweight textured silk fabric with a good sheen. Canton Crepe silk is a soft fabric with a fine crinkly surface; it is heavier than Crepe de chine. Crepon is a heavier crepe in silk. This is medium to heavyweight silk fabric with a crepe finish and beautiful luster. In fact, this is a heavier version of silk crepe.
In 2018, two transgenic goats were sold to the Canada Agriculture Museum after Nexia Biotechnologies went bankrupt.[5]
Research has since continued with the help of Randy Lewis, a professor formerly at the University of Wyoming and now at Utah State University. He was also able to successfully breed spider goats in order to create artificial silk. As of 2012, there are about 30 spider goats at a university-run farm.[6] The U.S. Navy has plans to turn this silk into a tool for stopping vessels by entangling their propellers.[7]
Applications of artificial spider silk biopolymers include using it for the coating of all kinds of implants and medical products as well as for artificial ligaments and tendons due to its elastic tendencies and also since it is a natural product which will synthesize well with the body. Furthermore, artificial silk biopolymers can be applicated in personal care products as well as in textile products.
References[edit]
- ^Service, R. F. (2002). 'MATERIALS SCIENCE: Mammalian Cells Spin a Spidery New Yarn'. Science. 295 (5554): 419b–4421. doi:10.1126/science.295.5554.419b. PMID11799209.
- ^Lazaris, A.; Arcidiacono, S.; Huang, Y.; Zhou, J.; Duguay, F.; Chretien, N.; Welsh, E.; Soares, J.; Karatzas, C. (2002). 'Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells'. Science. 48848 (5554): 472–476. doi:10.1126/science.1065780. PMID11799236.
- ^Biopolymer, Volume 8 Polyamides and Complex Proteinaceous Materials II, edited by S.R. Fahnestock & A. Steinbuchel, 2003 Wiley-VCH Verlag, pages 97-117 ISBN978-3-527-30223-9
- ^ThesisSubmitted to the Faculty of Drexel University by Milind Ramesh Gandhi, December 2006, CHAPTER 7
- ^''Spider goats' display angers Ottawa professor'. CBCnews website. CBC. Mar 29, 2012.
- ^Boatman, Liz. 'Bridges made of spider silk? You can thank goats for that'. Berkeley Science Review. Retrieved 18 October 2012.
- ^'Maritime Defense: USU Synthetic Spider Silk Lab Awarded Navy Grant'. Utah State University. June 22, 2018.
What Is Milk Silk Material Supplier
By Amanda Hill
Is that silk—or milk—you’re wearing? I recently came across this blog post of a German inventor who is turning milk into luxury, silk-like fabric. Anke Domaske, a former biochemist turned fashion designer, is using milk to create beautiful, sustainable clothing from a fiber called “QMilch.”
At first, I was skeptical. How in the world do you take a liquid, change its form and turn it into runway-ready looks?
Check out this video, where Anke explains the process:
The biggest catch is the price point. Anke says one kilo of QMilch will cost about $30. The same amount of cotton would cost about $3.80. For that price difference, I’ll stick with a cotton dress over a fancy milk frock. But, the idea that designers can create fashions from a product that might otherwise go to waste—that’s a beautiful thing!